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Abstract

Using the Lawrence-Livermore electron beam ion trap (LLNL-EBIT), we
produce a quasi-Maxwellian plasma by sweeping the energy of the nearly
monoenergetic beam so the time spent an any energy is proportional to
the Maxwell-Boltzmann probability at that energy. To verify the accuracy
of the quasi-Maxwellian, we measure line emission due to dielectronic
recombination (DR) and electron impact excitation (EIE) of Mg!®* and
Neb+, for a range of simulated temperatures. The ratio of DR to EIE lines
in heliumlike ions is a well understood temperature diagnostic. The
spectroscopically inferred temperatures are in excellent agreement with
the simulated temperatures.

1. Introduction

The LLNL-EBIT [1, 2] offers a number of advantages over
standard plasma sources for studying Maxwellian plasmas.
EBIT is essentially driven by a Maxwellian electron distri-
bution at a single temperature 7,; a wide range of 7, can
be simulated; density effects are generally unimportant;
the plasma is optically thin; and 7, is essentially constant
along the line of sight. Another advantage is the ability to
create ions of a given charge state and then study them in
a Maxwellian plasma under non-equilibrium conditions.

We measure line emission due to DR and EIE of Mg!%* and
Ne®* in order to determine the accuracy of the simulated
Maxwell-Boltzmann distribution. Heliumlike ions are com-
monly used to measure 7, of a plasma by forming the ratio
of DR to EIE lines [3, 4]. Here we observe (using the notation
of Gabriel [5]) the DR lines a, b, ¢, d, j, k, [, ¢, and r which are
unresolved by our spectrometers, and the EIE line w plus
DR satellite lines which blend with w. We refer to these
blended features as j and w.

2. Experimental arrangement

EBIT uses a nearly monoenergetic beam of electrons to pro-
duce and trap ions. To simulate a Maxwell-Boltzmann elec-
tron energy distribution, we sweep the beam energy E in
time so the time-averaged energy distribution closely
approximates a Maxwell-Boltzmann distribution. E is swept
between Eni, and En.x with a typical period of 5 ms. The
values used for Eni, and En.x depend on the 7, being
simulated. In general En;, < 0.2 keV because the beam is
poorly behaved below this energy, and En.x < 15.0 keV
because at higher energies voltage breakdowns begin to occur
inside EBIT. Many of the collision processes we are interested
in studying occur for E > 0.2 keV; and the simulated T
(typically <2.0keV) have an insignificant population of elec-
trons for E 2 Eqnax ~ 5 — 6 kgT. keV. The limits E;, and
Eqnax are not expected to affect strongly the line emission
of interest.
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Fig. 1. Scatter plot of photon / versus E for a Maxwellian simulation of
T. = 0.7 keV. The vertical features above E ~ 1.35 keV are due to EIE of
Mg!%*  and are (using the notation of Gabriel [4]) w, x and y which are
blended, and z. The features at E ~ 0.98 are due to DR into the n = 2 level
of Mg?*. The features at E ~ 1.2 keV are DR into the n =3 level. The
low energy tail which maps smoothly onto w is due to n > 4 DR.

The electron density is kept nearly constant during the £
sweep to maintain an electron-ion overlap independent of
E.This insures all electron-ion collision processes for a given
charge state have the same geometric overlap factor, just
as they would in a true Maxwellian plasma.

For the present results we use flat crystal spectrometers [6,
7] to record the resulting X-ray emission. The photon energy,
electron beam energy, and time of each event are recorded
using an “event-mode” data acquisition scheme [8]. Raw data
from a typical Maxwellian simulation are shown as a scatter
plot of photon wavelength versus beam energy in Fig. 1.

3. Results and Discussion

Using data such as shown in Fig. 1, we extract the intensities of
j and w for a number of simulated 7¢.. We select against con-
tributions to j due to DR and EIE of the heliumlike ions
and EIE and innershell ionization of the lithiumlike ions
using the known beam energy for every detected photon. Rad-
iative recombination (RR) onto hydrogenic ions can contrib-
ute to w and also at energies below threshold to z which
blends with j. Observations of hydrogenic and heliumlike lines
simultaneous with those of j and w are used to determine the
H-like/He-like abundances. We estimate the RR contri-
butions to be insignificant. Charge transfer (CT) of
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Fig. 2. Experimental magnesium j/w ratio versus 7. assuming a perfect
Maxwellian simulation. The solid curve is the best guess theoretical ratio.
The rate coefficient for w is from Zhang and Sampson [9]. The rate
coefficients for the DR lines are from Steenman-Clark et al. [10] and Faucher
et al. [11]. The dotted curves represent the range of theoretical ratios taking
into account the HULLAC [12, 13] and Faucher et al. [11] calculations of
w and the DR calculations of Vainshtein and Safronova [14] and Chen [15].
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Fig. 3. Inferred T versus simulated T, for magnesium (filled circles) and neon
(open circles) using the measured and theoretical j/w ratios. The inferred 7,
uses the best guess theoretical ratios. The error bars represent a combination
of the experimental error bars and the range of theoretical ratios.

hydrogenic ions with background gas in EBIT can also pro-
duce w and z. The CT contributions are subtracted out using
data at energies where DR and EIE are insignificant.
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The measured j/w ratios for magnesium are plotted in Fig.
2 with their 1o total experimental error bars. Various theoreti-
cal ratios are also plotted. Using theory we infer 7, and in
Fig. 3 plot these results versus the simulated 7. The inferred
T. are in excellent agreement with those simulated.

4. Conclusion

Using magnesium and neon we have tested our ability to simu-
late a Maxwell-Boltzmann distribution from the energy of the
Ne®* n = 2 DR resonances at ~ 0.68 keV to ~ 10.6 keV. Work
is in underway to repeat these tests using Ar'®" which will
allow us to test the electron distribution at higher energies.
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